Thinking Recursively

Part 111

Outline for Today

e Iteration + Recursion
 Combining two techniques together.

 Fnumerating Permutations
 What order should we do things?

 EFnumeration, Generally

« How to think about enumeration problems.

Recap from Last Time

List all subsets of

(1,2 3}

11, 2, 3}

1}

x 1

v 1

{}
v 2 X 2

{1}
v 2 X 2

£y | €y |y |y oy oy | oty |0

0

New Stuff!

More On Self-Similarity

L, @©
© =
.le
=
o =i
N o
R
Q -~
n S
0p)
_.m___a
= <
0p)

g
%
S
=
o~
)

=
2
o~
S
5

An order-0
Sierpinski carpet
is a filled square.

Otherwise, a
Sierpinski carpet is
eight smaller carpets
arranged in this grid
pattern.

(0, 0)

(1, 0)

(2, 0)

Label each square
with its (row, col).

(0, 1)

(2, 1)

(0, 2)

(1, 2)

(2, 2)

(0,0) © (0,1) | (0, 2)

) (1, 2)

(2,1) | (2, 2)

We can visit each
spot with a double
for loop.

Iteration + Recursion

» It’s completely reasonable to mix iteration
and recursion in the same function.

 Here, we’re firing off eight recursive calls,
and the easiest way to do that is with a
double for loop.

 Recursion doesn’t mean “the absence of
iteration.” It just means “solving a
problem by solving smaller copies of that
same problem.”

2
S
O,
=
8
=)
S

N
> &
o ©
25
g @
s <
yer

O
Hu

O,

Time-Out for Announcements!

Assignment 3

« Assignment 2 was due today at 1PM.

* You can use late days to extend the deadline by 24 or 48 hours.
Remember that you only get four late days to use over the quarter.

« Assignment 3 (Recursion!) goes out today. It’s due next Friday
at 1:00PM.

« Play around with recursion and recursive problem-solving!

* This assignment may be completed in pairs. Some
reminders:

* You are not required to work in a pair. It’s totally fine to work
independently.

» If you do work in a pair, you must work with someone else in your
discussion section.

 Work together, not separately. Doing only half the assignment
teaches you less than half the concepts. Working collaboratively and
interactively with your partner will improve your learning outcomes.

Recursive Drawing Contest

* Our (optional, just for fun) Recursive
Drawing contest ends on Monday at 1PM.

 If you're interested in participating, visit
http://recursivedrawing.com/, draw
something, and post it to EdStem.

« We're very impressed with the
submissions you've made so far! If you
haven’t yet done so, go check them out.

http://recursivedrawing.com/

(The Curtain Rises on Act 1I)

Enumerating Permutations

A permutation is a rearrangement
of the elements of a sequence.

Joshua Tree National Park Lava Beds National Monument

List all subsets of Each decision is of
{1, 2, 3} the form “do I
{1, 2, 3} include this item?”
{}
v 1 x 1

{2,3)

{3} {3} {3} {3}
JB/ X3 v3 \x&' /3/ \xB v 3 \xB
{} {} {} {} {3 {3 {} {}

Each decision is of
the form “which item
do I pick next?”

List all permutations of
{A, H, I}

AHI
A nn
|
HI Al AH
H I A I A H
llAll X [llHll X [llIll
I H I A H A
IIAH" IIAI" IIHA" IIHI" IIIA" IIIH"
2 T TR TR
AHI AIH HAL HIA IAH IHA

A Question of Parameters

listPermutationsOf ("AHI", "");

listPermutationsOf("AHI",);

listPermutationsOf("AHI",);

I certainly must tell you
which string I'd like
to form permutations of/!

listPermutationsOf(, ")

listPermutationsOf(

s)

—

N

Pass in an empty string every

time I call this function?
Most Unorthodox!

—— ~

listPermutationsOf("AHI");

listPermutationsOf("AHI");

— ™~

This is more acceptable
in polite company!

= ~

Wrapper Functions

 Some recursive functions
need extra arguments as
part of an implementation
detail.

* In our case, the string of
letters ordered so far is not
something we want to
expose.

A wrapper function is a
function that does some
initial prep work, then
fires off a recursive call
with the right arguments.

Caller
Wrapper Functzon

llll

Recurszve F unctzon

Storing Permutations

Set<string> permutationsOf(const string& str);

Base Case: No
decisions remain.

ResultType exploreRec(decisions remaining,
decisions already made) {
 1f (no decisions remain) {
return decisions made;
. } else {
 ResultType result;
for (each possible next choice) {
result += exploreRec(all remaining decisions,
decisions made + that choice);

}

\ return result;

}

}

Recursive Case:
Try all options for
the next decision.

ResultType exploreAllTheThings(initial state) {
return exploreRec(initial state, no decisions made);

}

Summary for Today

* Recursion and iteration aren’t mutually
exclusive and are frequently combined.

 We can enumerate subsets using a decision
tree of “do I pick this?” We can enumerate
permutations using a decision tree of “what
do I pick next?”

* Recursive functions can both print all
objects of some type and return all objects
of some type.

Your Action Items

* Read Chapter 8

 There are so many goodies there, and it’s a
great way to complement what we’re
discussing here.

« Work on Assignment 3

 Aim to complete the Towers of Hanoi
exploration and Human Pyramids by
Monday.

Next Time

« Fnumerating Combinations
 Can you build the Dream Team?
* Recursive Backtracking
 Finding a needle in a haystack.
« The Great Shrinkable Word Problem

* A fun language exercise with a cute
backstory.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

